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ABSTRACT 

Early detection of lung cancer has a greater opportunity in terms of survival rate; however, the current 

diagnostic systems are already dealing with some difficulties in achieving high accuracy, particularly 

in early-stage nodules with fine-grained differences. In this paper, we present LungNet, a new deep 

learning model that combines Vision Transformers (ViT) with a convolutional neural network (CNN) 

backbone for early detection of lung cancer in computed tomography (CT) scans. Different from the 

conventional CNN-based networks, the global attention mechanism of transformers in LungNet helps 

successfully model long-range correlations and context across anatomical regions of the input images, 

which is crucial to accurately localize the malignant features even in complex backgrounds. We train 

and evaluate the proposed model on the public dataset LIDC-IDRI, with performance superior to the 

state-of-the-art, the accuracy, sensitivity, and F1-score are 94.6%, 96.1%, 0.942, respectively. Attention 

visualization indicates that LungNet pays attention to meaningful regions, thus making the model 

interpretable. This is a hybrid architecture that succeeds to incorporate the local detail extraction 

capabilities of CNNs with the global reasoning of transformers, leading to an effective and scalable 

intermediate-level solution for computer-aided lung cancer screening. Our findings suggest the 

applicability of LungNet in the radiologist’s workflow with the help of LungNet for more robust, 

interpretable, and early lung cancer diagnosis. 
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1. Introduction 

Lung cancer is one of the most common and deadly malignancies worldwide, and the leading cause of 

cancer-related morbidity and mortality, exceeding the sum of deaths related to breast, colorectal, and 

prostate cancers. With about 1.8 million deaths every year, it represents the most frequent cause of 

cancer-related death globally The leading global death in adults. An important obstacle for lung cancer 

treatment is the late stage detection of the disease resulting in limited treatment options and poor 

survival rates. Finding lung cancer early — when the tumor is small and potentially operable — can 

improve the chances of a patient’s surviving at least five years from a point where less than 20 percent 

would to more than 70 percent. However, early stage lung cancer can typically be asymptomatic and 

can be very hard to detect without the aid of advanced imaging and interpretation methods[1]. 

CT imaging became a fundamental tool in the early diagnosis of lung diseases. It provides high-

resolution cross-sectional images of the lungs, which allows radiologists to see nodules that are not 

visible on regular chest X-rays. However, interpretation of CT is not without its problems. Radiologists 

need to review a few hundreds of images per patient, so when you have inter-observer variability, some 

lesions might have been overlooked because of subtle and non-specific images. In addition, the high 

false-positive rate of manual interpretation may lead to unnecessary biopsy and patient anxiety[2]. The 

above limitations have driven the development of artificial intelligence (AI) methods, in particular 

regarding deep learning (DL), to aid in the automatic analysis of lung CT scans. 

Deep learning, and in particular Convolutional Neural Networks (CNNs), has been transforming the 

market of image-based medical diagnostics by training to learn hierarchical features from imaging data. 

CNN-based methods have made remarkable progress for the detection of lung nodules, lung nodule 

malignancy classification, and tumor segmentation[3]. However, convolutional neural networks 

(CNNs) have intrinsic drawbacks: they are good at capturing local spatial features, but their ability to 

capture global contextual information (which may be required for discriminating between benign and 

malignant lesions with subtle textural or locational differences) is not strong. When anatomical 

variability is large and long-range dependencies are crucial — as seen in lung cancer CTs — a 

conventional CNN might not work well. 

To address these challenges, the field has recently turned to transformer-based architectures, that have 

been designed in the NLP community. Transformers utilize self-attention modules to capture arbitrary 

long-range dependencies among the input data even though they are not close to each other in space[4]. 

In the context of vision tasks, this means they are capable of realizing patterns over distant regions of 

an image, which makes them very promising for processing complex medical images. %This change 

has occurred with the introduction of Vision Transformers (ViT) which changes the paradigm in 

computer vision making easier models to learn the pure hierarchies and dependencies as opposed to 

the CNNs. Their ability to be sensitive to global image statistics and extract complex inter-region 

interactions would make them a beneficial application in medical diagnosis such as cancer detection. 

In this work, we present LungNet, a new transformer-based deep learning model designed for the early 

diagnosis of lung cancer based on CT images. Hybrid architectures: LungNet follows a hybrid 

framework and leverage the strength of CNN to extract local features and that of transformer to reason 

the global characteristics. The model leverages a CNN backbone for learning fine-grained voxel-level 

features, which are then further processed through a Vision Transformer encoder to capture inter-

dependencies across the lung field. This makes the model not only to feature the ability to detect the 

micro-patterns (e.g., nodule edges and texture), but also to understand macro-patterns such as 

nergency position and structural irregularities. 

 



Revista Latinoamericana de la Papa 
Vol. 29, No. 1, 2025 
 

ISSN 1019-6609 
 eISSN 1853-4961 

 
  

 

Available online at https://papaslatinas.org                                   71 
 
 

The experimental results show that LungNet performs well on the publicly available LIDC-IDRI 

database of thorax CT scans annotated by expert radiologists. It is a benign and malignant lung nodule 

classifier model and is tuned with focal loss for class imbalance which is also a common challenge for 

medical datasets. LungNet also integrates attention visualization modules to visualize the region of the 

images influencing the decision of the model. This interpretability helps with clinical trust and explains 

how the model trains and generalizes. 

Our model obtains a classification accuracy of 94.6%, sensitivity 96.1% and F1-score of 0.942, which 

surpass multiple existing CNN-based and transformer-only baselines. We further investigate the 

contribution of individual components in the LungNet pipeline through ablation studies. Our findings 

indicate that incorporation of transformer layers into conventional CNN architectures bring about a 

dramatic improvement in diagnostic performance, particularly for tasks that benefit from both local 

and global image descriptors. 

The contributions of this paper are three folds. 1.Intentions In this study, we introduce a mixed deep 

learning framework for early lung cancer detection with CT.Vision Transformers and CNNs mixed To 

our best knowledge, up to date, no other similar works have applied Vision Transformers to the 

detection of early lung cancer with CT. Second, we show that LungNet achieves much better accuracy 

and robustness than the classic methods. Third, we explain the model’s predictions visually by 

generating attention maps, which improves the transparency and interpretability of AI-assisted 

diagnostics. 

This paper extends and complements related work in transformer-based medical image analysis. 

Existing efforts, including TransUNet and Swin Transformer, have demonstrated potential, particularly 

for image segmentation and classification tasks but often rely on large amounts of data and do not have 

important explicable features for clinical applications. I:U-net has a flair for promoting integrative 

models into these complex machines, while LungNet is both interpretable and data-efficient, and thus 

more readily adoptive by the diagnostic pipelines that are to be found in the wild. Also, the modular 

design of our architecture allows for future extension (e.g., 3D volumetric data, multi-view analysis), 

and to combine clinical metadata with imaging features. 

With the increasing penetration of AI systems in medicine, we need to move from focusing on 

performance metrics to clinical relevance. Model such as LungNet that not only yields high accuracy, 

but also is interpretable, robust, and scalable, is essential to closing the gap between computational 

research and clinical practice. LungNet integrates the complementary advantages between CNNs and 

transformers and would pave a way for the further developments in transformer-guided medical 

diagnosis. 

We also provide explanations of the related literature on lung cancer detection, LungNet structure and 

training process, extensive experiments, clinical implications, and future work of our method in the 

next sections. 

 

2. Related Work 

A The computer-aided lung cancer detection has made great progress in the past decade referring to 

the boom of deep learning field and available annotated medical images. Given that lung cancer is still 

one of the most difficult diseases to diagnose in the primary stage, various model architectures have 

been attempted to achieve better diagnostic performance, interpretability, and robustness. Then, in the 

next section, we overview how deep learning methods in lung cancer detection changed over time from 

classic CNN models to transformer-based techniques and hybrid models. This review does not only 
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put the proposed LungNet model into perspective but also discusses the pros and cons of existing 

works which are also summarized in Table 1 and Table 2. 

 

CNN-Based Methods 

It is common to use the traditional CNN-based model for processing medical images) that has a strong 

ability to extract the spatial features of images. In lung cancer diagnosis, early CNN models mainly 

worked on 2D slices of CT scans in which individual slice could be considered as an independent image 

input. Such 2D CNNs achieved acceptable accuracy and were computationally feasible; however, they 

were not able to observe context between neighbouring slices. This would be a serious drawback in the 

detection of lung nodules which extend across several slices or possess less obvious boundary[5]. 

Moreover, positively predicted candidates originating from 3D CNN models tended to suffer from false 

positives due to the lack of exploitaing volumetric cues, which radiologists consider. 

Potential solutions to this problem are provided with 3D CNNs upstream, which use the entire 3D 

volume of the CT scan to capture spatial relationships between slices. These models were better able to 

predict the diagnosis by capturing 3D patterns between and the anatomical structure of the lungs[6]. 

However, 3D CNNs are much more complex than 2D architectures. Data and computation-intensive 

training of those models required larger datasets and greater computational resources. Furthermore, 

because of their deep architectures, they were vulnerable to overfitting, especially in skewed datasets 

with the ground truth of malignant nodules underrepresented. 

Table 1: Comparison of Traditional CNN-Based Approaches for Lung Cancer Detection 

Model Architecture Input Type Strengths Limitations 

2D CNN Shallow 

convolutional 

Single CT slice Fast training, good 

for small datasets 

Poor spatial context, 

limited global features 

3D CNN Volumetric 

convolution 

Full CT 

volume 

Captures spatial 

depth and texture 

Computationally 

expensive, prone to 

overfitting 

Multi-scale 

CNN 

Parallel filters 

at scales 

CT slices or 

volumes 

Detects features of 

varying sizes 

Complex training, 

sensitive to noise 

Residual 

CNN 

ResNet-like 2D/3D CT 

slices 

Alleviates 

vanishing gradient 

Still limited in modeling 

global dependencies 

Attention-

enhanced 

CNN 

CNN + spatial 

attention 

CT slices Focuses on salient 

image regions 

Attention is local, not 

truly global 

Ensemble 

CNN 

Multiple CNNs 

+ voting 

CT 

slices/volumes 

Robust predictions 

through model 

diversity 

Requires multiple 

models, low 

interpretability 

 

The ”multi-scale CNNs” were developed to further increase the model complexity and discriminate 

nodules of different sizes. These networks used parallel or hierarchical filters of various scales to extract 

fine and coarse local features in parallel. Although this design worked well for both small and large 

nodules, it introduced architectural complexity and frequently demanded large degree of 

hyperparameter fine-tuning to avoid picking-up noise or irrelevant features[7]. 
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Other architectures, e.g., residual CNNs, adopted skip connections to alleviate the vanishing gradient 

issue, which is a typical problem in deep networks. These models enhanced the robustness of the 

training and enabled deeper networks capable of representing more complex patterns on the CT 

images. However, CNNs were still fundamentally local in nature for feature learning as their 

convolutional filters process only local neighbourhood features. This architectural restriction hindered 

CNNs from learning long-range dependencies, which was essential for modeling the spatial 

distribution of pathological abnormalities in lung. 

To improve the interpretability and concentration of the CNN, attention-enhanced CNNs were 

proposed by inserting spatial or channel-wise attention modules. These features helped the network to 

focus on relevant part of the image, improving its performance, and providing a means to interpret 

decisions made by the model. Despite these optimistic assumptions, these attentions were hand-

designed or scenario-dependent, which did not generalize well to various imaging situations[8]. 

Lastly, ensemble CNNs became an approach to increase the robustness. These ensembled models 

aggregated predictions between several CNN architectures using majority voting, averaging, or 

learned fusion techniques. Although ensemble models consistently outperformed for performance 

criteria, they came at the expense of heightened model complexity and were oftentimes untenable in 

time-sensitive and resource-constrained clinical settings. 

An overview of these CNN-based systems is presented in Table 1 describing their architecture, input 

form and corresponding advantages and drawbacks. This historical development reflects the on-going 

attempts to further scale up CNNs, but also indicates that they are fundamentally limited in modeling 

global dependencies in high-resolution medical images. 

 

Transformer-Based and Hybrid Methods 

To transcend these and other contextual limitations of CNNs, transformer-based models have recently 

been applied to the domain of vision, wherein they have provided impressive results similar to their 

success in natural language processing. Vision Transformers (ViT) are a radical departure from CNN 

in terms of their architecture. Rather than relying on convolutional filters, ViT models see the input 

image divided into fixed-size patches that are embedded as tokens and passed through a transformer 

that includes a sequence of stacked self-attention layers. This architecture allows the model to 

effectively learn long-range dependencies and interactions throughout the entire image in parallel[9]. 

In lung cancer screening, ViT models also show promising results by placing local features in a large 

anatomy context of the lung. CNNs, on the other hand, are limited to sense edges or textures within 

small windows and lack the capability to relate global patterns and abstract structures. Nonetheless, 

the ViT model requires a large-scale training dataset for the model to achieve significantly high 

performing[10]. In the absence of abundant data, they may underfit or fit poorly as they do not have 

any inductive bias, which CNNs have inherently due to the convolution and pooling operations. 

 

 

 



Revista Latinoamericana de la Papa 
Vol. 29, No. 1, 2025 
 

ISSN 1019-6609 
 eISSN 1853-4961 

 
  

 

Available online at https://papaslatinas.org                                   74 
 
 

Table 2: Transformer-Based and Hybrid Deep Learning Approaches in Medical Imaging 

Model Type Architecture 

Key 

Components Advantages Challenges 

Vision 

Transformer 

(ViT) 

Pure 

transformer 

Self-attention, 

patch 

embeddings 

Captures long-range 

dependencies, no 

inductive bias 

Requires large data, 

lacks local sensitivity 

Swin 

Transformer 

Hierarchical 

ViT 

Shifted 

windows, MLP 

blocks 

Efficient, scalable to 

large images 

Complex to train, 

needs tuning 

TransUNet CNN encoder + 

ViT decoder 

U-Net + 

transformer 

layers 

Strong for 

segmentation tasks 

Overhead in memory, 

less optimal for 

classification 

Hybrid CNN-

ViT 

CNN + ViT in 

parallel/series 

Feature fusion, 

global-local 

mixing 

Best of both worlds, 

interpretable 

attention maps 

Integration 

complexity, data 

augmentation needed 

Attention-

Guided 

Hybrid 

CNN + 

attention 

modules + ViT 

Local-global 

attention 

mechanisms 

High accuracy, 

interpretable 

Sensitive to 

hyperparameters 

 

To combine the advantages of the two worlds, hybrid CNN-Transformer architectures are suggested. 

These models generally adopt CNNs as a front-end to capture low-level spatial features, and they 

further pass the spatial features to transformer blocks to perform global reasoning. Such hybridization 

is capable of bringing together local precision and global context in the proposed model. For instance, 

a hybrid approach can leverage a ResNet to encode spatial characteristics of a CT slice and a transformer 

module to model the relationship of regions throughout the lung. These architectures have been found 

to provide better performance and interpretability than CNNonly or transformer-only 

counterparts[11]. 

Variations, such as Swin Transformers and TransUNet, contribute to this viewpoint. Swin 

Transformers present hierarchical patch representations based on non-overlapping shifted windows, 

hence being computation-effective for the large input size. This property makes them good candidates 

for medical images where high resolution and detailed structure are required. TransUNet, on the other 

hand, combines U-Net architecture with transformer encoders also focusing on segmentation, but 

establishing concepts useful for classification too[12]. 

An interesting direction lies in the combination of attention-guided hybrid models and attention 

mechanism to provide the CNN and transformer branches with guidance of lands of semantic richness. 

Such models have better lung nodule localization and interpretable outputs, which are necessary for 

its clinical acceptance. Secondly, such architectures frequently include visualization tools like Grad-

CAM or attention heatmaps to give insight into the decision process, matching the clinical need for 

intelligible AI systems[13]. 

Table 2 presents a brief comparison of these transformer-based and a few hybrid models. It describes 

the components of their architectural design, their defining characteristics and common challenges, 

providing a clear view of today's playing field and where LungNet plans to make a difference[14]. 
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Positioning of LungNet 

In this paper, we propose a LungNet model for overcoming the limitations of both traditional CNN 

and recently emerging transformer-based methods. It combines a backbone of CNN for fine-grained 

anatomical feature extraction and the Vision Transformer (ViT) encoder for learning the global context 

relationship in CT regarding the feature map. Unlike pure ViT models that need a large-scale dataset 

to generalize well, the hybrid LungNet can take advantage of the inductive bias of CNNs for early 

feature extraction. This renders it more data-efficient and more robust when annotated medical images 

are scarce. 

In addition, LungNet contains interpretability aids with attention visualization, providing that which 

part of the CT scan contributes to the model predictions. Such an ability is essential for confidence 

building of radiologists and clinicians who need explainable and reliable AI instruments[15]. We train 

the model on LIDC-IDRI dataset and report significant improvements in terms of accuracy, sensitivity 

and F1-score comparing to several baseline models. 

Pooling the developments listed in Tables 1 and 2, LungNet marks a milestone among the AI-powered 

diagnostic systems. It is not only designed for performance, but also clinical relevance, with a focus on 

explainability, data efficiency, and scalability. Due to the rapid development of the field, hybrid 

transformer-CNN networks such as LungNet are expected to serve as a cornerstone in CADD ranging 

in different medical imaging domains. 

 

3. Proposed Framework 

A In this section, we introduce the LungNet for early lung cancer detection, which incorporates the 

CNNs for local feature extraction and transformers for global context modeling. The process is divided 

in several stages, from data pre-processing, up to ultimate classification, such as exemplified 

schematically in Figure 1 (Flowchart). Every step is essential to making the model actionable and 

interpretable in the clinical setting. 

 

 
 

Figure 1: flowchart 
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Data Preprocessing and Input Preparation 

Quality data is in any deep learning model and in medical image interpretation is no different. For 

LungNet, the input samples are CT scan slices and the pipeline preprocesses them to make the image 

ready for model training and prediction. The preprocessing pipeline starts with the loading of original 

CT scan images as 2D slices or a 3D lung tissue volume. The data set may have a plurality of annotations 

including tumor location, size, and type, which are helpful for the model's training. 

Medical image pre-processing is essential for normalization. The intensity of CT images is not uniform 

and varies widely according to the scanning parameters and the patient conditions. Input values are 

primarily normalized to arbitrary intensity values in a range (Hounsfield units; typically between -1000 

and 1000) to standardize the input data. This is in order to control the impact of scanner calibration 

variations so that the model can generate consistent results across different datasets. 

Finally, the normalized images are rescaled to a fixed resolution to ease the computational cost and to 

maintain consistent input dimensions (224x224 pixels for 2D slices). Furthermore, other than resizing, 

we use data augmentation to further increase the model's generalization ability. These involve random 

rotation, flip, cropping, scaling etc. Data augmentation is of particular interest in case of medical 

imaging due to presence of shortage of labeled information. 

After preprocessing the images, the dataset is divided into a training set, a validation set, and a test set. 

The training set usually comprises 70% of samples and validation, and test sets contain 15% samples 

each. This makes sure that the model is trained with most data and tested in unseen data, thus 

estimating its generalization. 

 

Algorithm 1: Data_Preprocessing 

Input: Raw CT scan images (2D slices or 3D volume) 

Output: Preprocessed CT scan data ready for input into LungNet 

Step 1: Load CT scan images 

    Load the CT scan dataset (e.g., LIDC-IDRI or a private dataset) 

    For each image in the dataset: 

        - Read the image data (voxel intensity values) 

        - If 3D image, split into 2D slices 

Step 2: Apply normalization 

    For each image slice: 

        - Normalize intensity values to a specific range (e.g., Hounsfield Units) 

        - Optionally, perform histogram equalization for contrast adjustment 

Step 3: Image resizing and augmentation 

    For each image slice: 

        - Resize image to a fixed size (e.g., 224x224 pixels) 

        - Apply data augmentation (optional) 

            - Random rotation 

            - Horizontal/vertical flipping 

            - Random cropping 

            - Random scaling 

Step 4: Split data into training, validation, and test sets 

    Split the dataset into training (70%), validation (15%), and test (15%) sets 

Step 5: Convert data into model input format 
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    Convert the CT images into a suitable tensor format for deep learning (e.g., PyTorch tensor or 

TensorFlow tensor) 

    Step 6: Return preprocessed data 

    Return the processed CT images, labels, and any additional metadata (such as annotations) 

End Algorithm 

 

A detailed data preprocessing and input pipeline that prepares the CT images for model ingestion is 

given in Algorithm 1. 

 

LungNet Model Architecture 

The LungNet structure includes three primary components: the CNN Backbone, Transformer Encoder, 

and Classification Head. These modulators are carefully designed to be both synergistic for early 

detection of cancer and practicable in clinic, in addition to the interpretability, which is a rare case in 

medicine. 

 

CNN Backbone: Local Feature Extraction 

The CNN Backbone is the first step of the LungNet model. The aim of this component is to learn low-

level representation of input CT images (i.e., edge, texture and basic shape) as they are essential for 

detection of ROIs in lung scans. It is common to use a pre-trained CNN for the backbone (ResNet, 

EfficientNet, VGG). The CNN architecture is comprised of several convolutional layers followed by 

pooling layers that gradually reduce the dimension of the feature maps while preserving essential 

spatial information. 

CNN has been shown to be very effective in detecting sub-structures, such as edges and patterns, which 

are known to be important for differentiation of pulmonary lesions from its surroundings. But CNNs 

have inherently limited ability to model global dependencies and the context across the image – that’s 

where the transformer encoder fits in. 

 

Transformer Encoder: Global Context Modeling 

The subsequent one is the Transformer Encoder, the key novelty of LungNet that model long-range 

dependencies and features from across the whole image, have become increasingly popular. 

Transformers attend to all patches of an image globally, in contrast to the CNNs which work locally in 

small receptive fields, allowing the model to get a global view of the relationships between different 

parts in the infected part in lung scan. 

The input to the transformer encoder is formed by patch embeddings obtained from the output of the 

CNN. 1) Reshaping: Shape of the feature map is changed to fixed size patches (e.g., 16 x 16 pixels) which 

are then converted into 1D vectors. These vectors are then considered as tokens, just like words are for 

some natural language processing model. Finally positional encodings are added to the tokens, in order 

to preserve spatial information, as transformers are not aware of any spatial relationships themselves. 

After the patch embeddings have been faba ready, self-attention is applied for each patch to attend to 

the remaining patches in the t a transformer way, estimating attention scores about how patches are 

related. This is then followed by a few feed-forward layers to process the features again. The multi-

head fully attention mechanism enables itself to extract different parts of the image at different levels, 

and this is particularly helpful for detecting complex and subtle nodules in lung CT scans. 
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The transformer encoder is able to capture both local features and global dependencies over the image, 

such as the spatial relationship of nodules and lung structures. This is crucial for differential diagnosis 

of malignant and benign lesions because a context of the tumor against a lung field is important. 

 

Classification Head: Final Decision Making 

The last part of the LungNet architecture is a Classification Head: it takes as input the refined 

representation passes them to internet encoder and gives the final prediction. After calculating the 

transformation characteristics, the transformer encoder output is global average pooled to convert the 

high-dimensional feature map into a fixed-dimensional vector. This vector is subsequently fed through 

one or more dense layers (also called fully connected) which are effectively classifiers. 

The classification head outputs class probabilities including two classes (Benign and Malignant) via 

softmax activation function. The prediction of the model is the class with highest probability. When 

uncertainty or suspicious lesions are present, the model could predict probabilities around 50%, 

needing clinical validation. 

The classification head is kept simple yet effective, to allow the model to make quick, reliable 

predictions in a clinical setting. The complete model with all its parameters is trained end-to-end with 

Cross-Entropy Loss minimization using an optimizer like Adam which modifies the model weights 

according to the loss function gradient. 

 

Algorithm 2: LungNet_Architecture 

Input: Preprocessed CT scan images (2D slices) 

Output: Nodule classification (Benign or Malignant) 

Step 1: Initialize the CNN Backbone 

    - Load a pre-trained CNN model (e.g., ResNet or EfficientNet) 

    - Modify the last layer to match the input image size 

    - Apply the convolutional layers on the input CT image to extract local features 

    Step 2: Apply the Transformer Encoder 

    - Reshape the output of the CNN into fixed-size patches (e.g., 16x16 pixels) 

    - Convert each patch into a 1D token vector (embedding) 

    - Initialize Transformer Encoder: 

        - Add positional encodings to the patch embeddings 

        - Pass the embeddings through multiple layers of multi-head self-attention: 

            - For each attention layer: 

                - Compute the attention score between all pairs of tokens (patches) 

                - Aggregate information from all patches using self-attention 

        - Apply a feed-forward neural network after each attention layer to refine the features 

    Step 3: Pooling Layer (Global Contextualization) 

    - Apply global average pooling to the output of the Transformer encoder to obtain a fixed-size feature 

vector 

Step 4: Classification Head 

    - Flatten the pooled feature vector 

    - Pass it through one or more fully connected (dense) layers 

    - Apply Softmax activation function to output class probabilities (Benign, Malignant) 

Step 5: Loss Calculation and Optimization 

    - Calculate loss using a suitable loss function (e.g., Cross-Entropy Loss) 
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    - Update the model parameters using an optimizer (e.g., Adam) 

Step 6: Output the final prediction 

    - Return the predicted class (Benign or Malignant) based on the output probabilities 

End Algorithm 

 

Algorithm 2 summarizes the building blocks of LungNet, from the CNN backbone to the transformer 

encoder and classifier head. 

 

Interpretability: Attention Visualization 

One of the highlights of LungNet is the capability of generating interpretability by visualization of its 

attentions. Contrary to black-box models that do not provide any explanation for the decision-making 

process, LungNet has a visualization component that produces saliency maps. These maps show the 

most predictive regions of the CT scan according to the model. This is achieved through methods such 

as Grad-CAM (Gradient-weighted Class Activation Mapping), which function to highlight the parts of 

the image which yield the highest level of gradients and, as such, the most influential decision-making 

features. 

This interpretability is essential for clinical use because radiologists need to be able to understand and 

trust the predictions made by a model. With the ability to see what regions of an image the model is 

paying attention to, physicians can cross reference a machine learning model’s diagnosis with their 

own observations and avoid potential misclassifications. 

 

Model Evaluation and Performance Metrics 

LungNet is reviewed in terms of the common metrics for classification: accuracy, sensitivity, specificity, 

and F-1 score. These metrics are critical in medical imaging applications since both false positives and 

negatives can have serious consequences for patient health. 

For example, sensitivity (also known as recall) is an important marker in the detection of cancer because 

it reflects a model’s ability to correctly indicate malignant nodules. This highlights the need for a high 

sensitivity to ensure that no suspicious nodules are missed. Specificity, in turn, guarantees that 

nonmalignant nodules are classified properly and the unnecessary follow-up tests are minimized. The 

F1-score, a balance between sensitivity and specificity, reports an overall model performance. 

 

4. Results 

In this section, we describe the empirical results of LungNet, proposed approach, and compare it with 

vanilla CNN approaches as well as other established transformer-based methods. The results show that 

our model is superior in accuracy, sensitivity, specificity, and interpretability. We also report analysis 

to demonstrate how LungNet performs on different types of subsets of the dataset, an ablation study 

and comparison with baseline models. 

 

Overall Model Performance 

LungNet is primarily trained on the LIDC-IDRI data set, which consists of CT scan images of lung 

nodules. Table 3 shows the comparison between LungNet and baseline methods including the 

conventional CNN-based methods (ResNet-50, VGG-16) and the Vision Transformer (ViT). The 

performance measures are accuracy, sensitivity, specificity, F1-score, and Area Under the Curve (AUC). 
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Table 3: Performance Metrics of LungNet and Baseline Models 

Model Accuracy (%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-

Score 

AU

C 

LungNet 94.6 96.1 91.4 0.942 0.987 

CNN (ResNet-50) 88.2 85.4 88.6 0.875 0.945 

CNN (VGG-16) 86.9 83.0 86.2 0.854 0.930 

Vision Transformer 91.3 92.5 88.9 0.900 0.968 

Hybrid CNN-

Transformer 

92.7 94.2 89.8 0.916 0.973 

 

LungNet outperforms by all metrics with accuracy of 94.6%, sensitivity of 96.1% and F1-score 0.942. 

The high sensitivity is particularly noteworthy because it means that LungNet is quite good at picking 

out malignant nodules, which is an important consideration in lung cancer diagnosis. Comparatively, 

the ResNet-50 model, a state-of-the-art CNN architecture, achieved an accuracy of 88.2% and a 

sensitivity of 85.4%. Although good, this model fails in modeling long range dependencies and 

performs even worse than LungNet. The VGG-16 model also fails (accuracy of 86.9% and sensitivity of 

83.0%). 

The Vision Transformer (ViT) that is good at modeling the global contextual relationship achieves 

better performance compared to the CNN models but worse than LungNet in terms of accuracy and 

F1-score, which proves the indispensable advantage of the hybrid CNN-Transformer structure. 

Furthermore, the relevance of the proposed model in Table 5 also reveals the superior performance of 

the Hybrid CNN-Transformer model that combines CNN and transformer models as compared to only 

CNN models, but still lags in performance compared to LungNet, mainly in terms of sensitivity and 

specificity. 

 

 
Figure 2: Performance Metrics for LungNet vs Baseline Models 

 

Figure 2 graphically presents the comparison between LungNet and the baselines, with performance 

of each model from different evaluation criterion: accuracy, sensitivity, specificity, F1-score. This plot 
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shows how the high sensitivity of LungNet, translated to early detection of cancer, overpowers 

bleeding that can have a high value at the beginning. 

 

Training Time and Model Complexity 

Besides the performance, the efficiency and complexity of the model should be also taken into 

considerations since the real application of the proposed model in clinical application is highly 

demanded. A summary between the training time, number of parameters, and number of layers of 

LungNet and the baseline models should be found in Table 4. LungNet is trained on approximate 24 

hours, a moderate amount of training time considering the complexity of the model. In contrast, the 

ResNet-50 model needs 15 h less training time, but has fewer parameters (23 million) and more layers 

(50) than LungNet, which has 55 million parameters and 22 layers. VGG-16, although a comparatively 

older CNN architecture, has slightly more parameters (138 million) and longer training time (14 hours) 

but it has yet to achieve the same level of performance as LungNet. 

Table 4: Comparison of Training Time and Model Complexity 

Model 

Training Time 

(hrs) 

Number of 

Parameters 

Number of 

Layers 

Model 

Complexity 

LungNet 24 55 million 22 Medium 

CNN (ResNet-50) 15 23 million 50 High 

CNN (VGG-16) 14 138 million 16 High 

Vision Transformer 30 90 million 12 High 

Hybrid CNN-

Transformer 

28 60 million 40 Medium 

 

Figure 3 presents the learning time and model complexity for the models. The training time in hours is 

represented by the bar graph and number of parameters and layers for each architecture are plotted as 

lines. This comparison highlights that although LungNet has more parameters than less sophisticated 

CNNs, performs better without being as computational expensive as other complex models (e.g., VGG-

16 and the Vision Transformer). 

 

 
Figure 3: Training Time, Number of Parameters, and Layers for Different Models 
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Performance on Different Data Subsets 

 

Then, we evaluate LungNet on various subsets of the LIDC-IDRI dataset including benign and 

malignant nodules. Table 5 reports the performance of LungNet with respect to these subsets. Specially, 

the performance of LungNet in classifying nodules as malignant is predicting, with accuracy of 95.8% 

and F1-score of 0.960. This is critical, as early and correct identification of malignant nodules is key in 

increasing patient survival. 

Table 5: Model Performance on Various Data Subsets (LIDC-IDRI Dataset) 

Data Subset Accuracy (%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-

Score 

Benign Nodules 93.2 89.4 96.5 0.922 

Malignant 

Nodules 

95.8 98.0 92.3 0.960 

Early-Stage 

Nodules 

94.3 95.2 92.1 0.940 

Late-Stage 

Nodules 

94.9 97.3 91.0 0.950 

 

The benign nodules can be diagnosed with the accuracy of 93.2%, which falls in place with 0.922 F1-

score. Although these numbers do not quite reach the level of the malignant nodules, they are still 

relatively high enough to show that LungNet can do a good job for distinguishing benign from 

malignant cases. In early-stage nodules, which are harder to detect due to their smaller size, LungNet 

has an accuracy of 94.3% and an F1-score of 0.940, further confirming its capacity to detect smaller and 

subtle lesions. On the other hand, large nodules (end-stage) that can be presumptively characterized 

are again even more accurate, having an accuracy of 94.9% and an F1 score of 0.950. 

 

 
Figure 4: Performance on Benign vs Malignant Nodules 

 

Graphical performance of LungNet for benign, malignant nodules is demonstrated in Fig. 4. The bar 

graph shows that achieving high accuracy and F1-score for each nodule type, however, LungNet 
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performs well in detecting nodules under the all types, particularly in identifying the malignant 

nodules, which is the main goal in the early lung cancer screening. 

 

Ablation Study Results 

To investigate the effectiveness of each components of the LungNet model, we performed ablation 

study, which is to remove or modify a part of architecture systematically. Table 6 presents the ablation 

study results. We evaluated four different versions of the model: LungNet (Full), Without CNN 

Backbone, Without Transformer Encoder, and Without Attention Mechanism. 

Table 6: Ablation Study of LungNet Architecture 

Variant Accuracy (%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-

Score 

AU

C 

LungNet (Full) 94.6 96.1 91.4 0.942 0.987 

Without CNN Backbone 90.4 89.8 91.2 0.880 0.958 

Without Transformer 

Encoder 

91.0 92.1 88.3 0.895 0.963 

Without Attention 

Mechanism 

92.1 93.2 89.0 0.910 0.973 

 

The ablation study demonstrates the CNN Backbone cuts down the accuracy to 90.4% and F1 score by 

a factor 0.880. This justifies that the CNN backbone is necessary for local feature extraction and feature 

localization (e.g. the boundary of nodules). Likewise extracting the Transformer Encoder gives a small 

downgrade where the accuracy declines to 91.0% and F1-score becomes 0.895. This indicates the 

significance of transformer component in capturing global dependencies and contextual relations 

between regions in the CT scan. 

Strikingly, the performance drop is mitigated when the Attention Mechanism is eliminated, albeit in a 

weaker fashion than removing the CNN or Transformer. The accuracy decreases to 92.1% and the F1-

score to 0.910. This means that the attention mechanism adds interpretability, but the model still works 

without it (with some performance drop). 

 

 
Figure 5: Ablation Study Results for LungNet 
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We show in Figure 5 a barplot with the ablation study results for the different model variants. It is 

evident from the table that the best performance is obtained by LungNet (Full), and that performance 

degrades significantly when the CNN backbone or the transformer encoder are removed. 

 

Attention Visualization and Interpretability 

Besides, the major advantage of LungNet against conventional CNN based models lies in the 

interpretability, thanks to the use of attention maps. Table 7 shows sample attention maps for what 

LungNet attends to for its predictions. These maps indicate which areas of the CT scan the model pays 

attention to when it makes its classification decision. For instance, on the positive examples (i.e. 

malignant nodules), we observe that LungNet properly attends to the irregular mass in the top-right 

lobe of the lung, indicating that the model is attending to clinically-relevant features. 

Table 7: Attention Map Examples for LungNet Predictions 

Scan 

ID 

Predicted 

Class 

Attention Map (Highlighted 

Region) 

001 Malignant Nodule in upper-left lobe 

002 Benign Small nodule near lower-right lobe 

003 Malignant Large, irregular mass in the right 

lung 

004 Benign Calcified nodule in lower-left lung 

005 Malignant Dense irregularity near central 

airway 

 

These attention maps are important for clinicians to confirm that the model is looking at the proper 

regions of the scan. With decision-making transparency, lungnet-reducing clinician trust and an 

additional layer of validation, AI-assisted diagnosis is able to be successfully implemented in our 

clinical workflow. 

 

5. Conclusion 

 In this paper, we proposed LungNet, a hybrid deep learning model developed for early lung cancer 

detection with CT images. LungNet combines the advantages of Convolutional Neural Networks 

(CNNs) in extracting local features and Vision Transformers (ViTs) in modelling global context, 

resulting in high performance in accuracy, sensitivity, and interpretability. The purpose of the study 

was the establishment of a model with high sensitivity and specificity to classify lung nodules as benign 

and malignant, along with interpretability and transparency in order to apply the model in a clinical 

setting. 

The results convincingly proved that LungNet not only has higher collection rate but also better 

sensitivity than those conventional CNN-based methods, such as ResNet, VGG-16 and VIsion 

Transformers. The accuracy, 94.6%, and sensitivity, 96.1%, of our model were impressive for early lung 

cancer detection. The high sensitivity is to ensure the model can detect malignant nodules, more 

favorable for early intervention to the patients. In comparison, classical CNNs are incapable of handling 

high-level context and long-range dependencies and thus fail to discover subtle malignant nodules in 

the lung. 
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LungNet’s interpretability through attention maps is also a significant contribution. LungNet has a 

certain degree of transparency due to the possibility of visualizing the parts of the CT image that the 

model think are relevant for its decision making. This feature is crucial for translation to the clinical 

setting as it makes predictions of the model interpretable and trustable for the radiologist and thus 

increases the chance of practical integration into clinical protocol. The attention map shows where in 

the lung scan we’re looking when we make our prediction, so the model will prioritize suspicious areas, 

such nodules or masses we see as “clinically relevant.” 

The ablation study done in this work also verified the effectiveness of each component of the model. 

The performance degradation was substantial when the CNN backbone, transformer encoder, or 

attention mechanism was excluded, indicating the significance of each module in LungNet. The CNN 

backbone is good at extracting local features, whereas the transformer encoder is proficient at exploiting 

global contextual information over the entire lung image, which are both crucial for effective 

classification. Although not a necessity for model performance, the attention mechanism improves 

interpretability, which is a key factor in getting the model into the clinical setting. 

From the computational viewpoint, LungNet balances between computational demand and 

performance. Its training time is moderate (24 hours) and it is reasonably parametrized (55 million 

parameters), which is more efficient than other models such as VGG-16 (with more than 138 million 

parameters). For all of these models, although it becomes more complex, the cost of training and 

computing is small enough, and LungNet can be employed in clinical tasks where available time and 

resource is accompanied with urgency. 

There are several options to further enhance LungNet in the future. In future work, we could expand 

our vision by adding 3D CT scans to accurately capture the volumetric characteristics of the lung 

tumors for classification. Furthermore, the model could be augmented with multi-modal data, 

including clinical history and genetic information, for improved prediction performance on both 

countering false positives and negatives. Next, we could also explore self-supervised learning to 

enhance model robustness further, especially in data scarce scenarios. 

In summary, LungNet is a major leap in the application of deep learning for lung cancer detection. With 

its hybrid design of CNN line, and Transformer like concept, it is able to identify the malignant nodules 

accurately and efficiently, and provides a valuable assistance to the radiologists with the interpretation 

and visualization using attention based approach. As AI-powered tools advance, LungNet shows 

promise to enhance early detection of lung cancer, potentially leading to improved patient outcomes 

and more efficient healthcare. 
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