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ABSTRACT 

Deep learning has shown great promise in the automatic detection of thoracic diseases using chest X-

rays (CXR). However, most existing models lack anatomical awareness, often treating the entire image 

uniformly without accounting for organ-specific localization, which can lead to false positives and 

reduced interpretability. This paper presents Anatomy-XNet, a novel anatomy-aware convolutional 

neural network (CNN) that integrates anatomical priors to enhance thoracic disease classification. The 

model incorporates an Anatomy-Aware Attention Module (A³M) and Probabilistic Weighted Average 

Pooling (PWAP) to focus on key anatomical structures such as the lungs, heart, and diaphragm, using 

organ-level annotations. We evaluated Anatomy-XNet on three major public datasets: NIH ChestX-

ray14, CheXpert, and MIMIC-CXR, achieving AUC scores of 85.78%, 92.07%, and 84.04%, respectively. 

Compared to baseline DenseNet-121 models, Anatomy-XNet consistently outperformed in both 

classification accuracy and localization precision. The model also demonstrated improved 

interpretability through heatmap visualization, aligning closely with expert annotations. These results 

underscore the importance of incorporating anatomical context in medical image analysis and pave the 

way for more accurate and clinically useful AI tools in radiology. 
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1. Introduction 

Thoracic diseases, including pneumonia, pneumothorax, pleural effusion, cardiomegaly, and 

pulmonary edema, are among the leading causes of morbidity and mortality worldwide. Chest X-rays 

(CXR) are one of the most commonly used imaging modalities for the initial assessment and diagnosis 

of these conditions due to their low cost, accessibility, and rapid acquisition. However, interpreting 

CXRs is a complex task, often requiring expert radiological knowledge to distinguish subtle 

abnormalities that may be indicative of disease. The global shortage of trained radiologists, particularly 

in low-resource settings, has fueled the development of artificial intelligence (AI) systems capable of 

automating the detection and classification of thoracic diseases in CXRs. 

In recent years, deep learning—particularly convolutional neural networks (CNNs)—has 

demonstrated impressive performance in medical image analysis. Models such as DenseNet, ResNet, 

and EfficientNet have been successfully trained on large-scale datasets like NIH ChestX-ray14 and 
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CheXpert, achieving near-radiologist level accuracy in some tasks. However, despite these advances, 

most existing models treat the chest X-ray as a homogenous image without incorporating knowledge 

of human anatomy. This lack of anatomical context limits the model’s ability to focus on disease-

relevant regions, often resulting in poor localization, false positives, and reduced interpretability. For 

example, a model might detect a suspected consolidation in non-pulmonary areas, which is clinically 

implausible. 

Radiologists, by contrast, interpret CXRs by systematically examining specific anatomical structures—

the lungs, heart, diaphragm, mediastinum, and pleura—and relating abnormalities to these regions. 

Incorporating this anatomical reasoning into deep learning models could significantly enhance both 

the accuracy and clinical utility of AI-driven diagnostics. This forms the central motivation for our 

study: to develop a deep learning model that not only performs classification tasks but also embeds 

anatomical awareness in its feature extraction and decision-making processes. 

We propose Anatomy-XNet, an anatomy-aware deep learning model specifically designed for thoracic 

disease detection in CXRs. The model introduces two key innovations: the Anatomy-Aware Attention 

Module (A³M) and Probabilistic Weighted Average Pooling (PWAP). A³M directs the model’s 

attention to anatomically relevant regions, guided by organ-level annotations, while PWAP ensures 

that features extracted from critical areas are given greater importance during the classification phase. 

These modules work in tandem to align the model’s focus with clinical reasoning, improving both 

diagnostic accuracy and interpretability. 

Anatomy-XNet is trained and evaluated on three widely used benchmark datasets: NIH ChestX-ray14, 

CheXpert, and MIMIC-CXR. We assess the model’s performance in terms of area under the ROC curve 

(AUC), precision-recall metrics, and localization accuracy via saliency map analysis. Additionally, we 

compare its performance with standard CNN architectures lacking anatomical awareness to 

demonstrate the added value of integrating anatomical priors. 

The findings from this research not only offer a more clinically aligned AI tool for CXR interpretation 

but also highlight the broader importance of incorporating domain-specific knowledge into medical AI 

models. By aligning deep learning with human anatomical reasoning, Anatomy-XNet represents a step 

forward in building interpretable, accurate, and trustworthy AI systems for radiology. 

2. Materials and Methods 

1. Overview 

This study presents Anatomy-XNet, a deep learning framework designed to improve thoracic disease 

detection in chest X-rays (CXRs) by incorporating anatomical awareness. The architecture enhances 

diagnostic precision and interpretability by embedding organ-level focus mechanisms into standard 

convolutional neural networks (CNNs). The following subsections outline the datasets used, 

preprocessing steps, model architecture, training procedure, and evaluation metrics. 

2. Datasets 

Anatomy-XNet was trained and evaluated on three publicly available chest X-ray datasets: 

• NIH ChestX-ray14: Comprises 112,120 frontal-view X-ray images of 30,805 unique patients 

labeled with 14 thoracic disease categories. 

• CheXpert: Contains 224,316 chest radiographs of 65,240 patients labeled for 14 observations 

including uncertain labels. 
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• MIMIC-CXR: Consists of over 370,000 CXR studies from Beth Israel Deaconess Medical Center, 

linked with free-text radiology reports. 

To embed anatomical context, we used a subset of each dataset with available organ-level annotations 

(e.g., lung fields, cardiac silhouette, diaphragm), either provided directly or inferred using an auxiliary 

segmentation model. 

3. Preprocessing 

All images were resized to 224×224 pixels for uniformity and computational efficiency. Data 

augmentation techniques including rotation (±10°), horizontal flipping, and brightness normalization 

were applied to increase robustness. Pixel intensity was normalized to the [0,1] range. For organ-aware 

attention, binary masks representing anatomical regions were applied as spatial priors during training. 

Uncertain labels (present in CheXpert) were handled using U-Zero policy, where uncertain findings 

were treated as negative to minimize label noise. 

4. Model Architecture 

Anatomy-XNet builds upon the DenseNet-121 backbone due to its strong baseline performance in 

medical imaging tasks. Two key modules were added: 

• Anatomy-Aware Attention Module (A³M): Applies a learned attention map over predefined 

anatomical regions. This map highlights clinically relevant areas such as the lungs, heart, and 

diaphragm, ensuring the model allocates more weight to features originating from these 

structures. 

• Probabilistic Weighted Average Pooling (PWAP): Replaces global average pooling with a 

probabilistic mechanism that assigns higher weight to activations localized within 

anatomically significant regions, improving interpretability and localization accuracy. 

The output layer includes 14 sigmoid-activated neurons corresponding to the 14 disease labels. A 

multi-label binary cross-entropy loss function was used for training. 

5. Training Procedure 

Training was performed using Adam optimizer with an initial learning rate of 0.001, decayed using a 

cosine annealing scheduler. The model was trained for 30 epochs with a batch size of 32 on an NVIDIA 

Tesla V100 GPU. Early stopping based on validation loss was applied to avoid overfitting. 

6. Evaluation Metrics 

Model performance was evaluated using: 

• Area Under the Receiver Operating Characteristic Curve (AUC) for each disease class. 

• Localization Accuracy, assessed using Grad-CAM heatmaps and intersection-over-union (IoU) 

with ground truth annotations. 

• Precision, Recall, and F1-score for overall classification performance. 

• Statistical Significance between Anatomy-XNet and baseline DenseNet was tested using 

paired t-tests. 
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3. Results 

This section presents the performance outcomes of Anatomy-XNet compared to a baseline DenseNet-

121 model trained under identical conditions but without anatomical awareness. The models were 

evaluated on three benchmark datasets: NIH ChestX-ray14, CheXpert, and MIMIC-CXR. Key metrics 

include Area Under the Curve (AUC), Precision, Recall, F1-Score, and Localization Accuracy, with 

particular attention to performance on disease detection and interpretability via anatomical attention. 

1. Classification Performance 

Anatomy-XNet outperformed the baseline DenseNet-121 in average AUC across all datasets. The 

largest performance gain was observed in diseases that are highly dependent on localized anatomical 

cues (e.g., cardiomegaly, effusion, consolidation). 

Table 1: Comparison of Average AUC Scores Across Datasets 

Dataset DenseNet-121 (AUC) Anatomy-XNet (AUC) Δ AUC 

NIH ChestX-ray14 82.1% 85.78% +3.68% 

CheXpert 89.0% 92.07% +3.07% 

MIMIC-CXR 80.2% 84.04% +3.84% 

 

Anatomy-XNet achieved statistically significant improvements (p < 0.01) across all datasets. The 

model consistently showed higher sensitivity (recall) without compromising specificity (precision). 

2. Per-Class Performance 

To better understand the model’s strengths, we analyzed AUC values by disease class on the CheXpert 

dataset. 

Table 2: Disease-wise AUC Comparison on CheXpert Dataset 

Condition DenseNet-121 AUC Anatomy-XNet AUC 

Cardiomegaly 87.6% 91.2% 

Consolidation 83.1% 86.5% 

Pleural Effusion 88.9% 92.3% 

Pneumothorax 89.5% 91.6% 

Edema 85.3% 88.7% 

Atelectasis 84.2% 86.4% 

 

These improvements reflect the benefit of anatomical attention, particularly in conditions with clear 

spatial dependencies. 

3. Localization Accuracy 

To assess interpretability, we used Grad-CAM to visualize heatmaps of model attention. Heatmaps 

from Anatomy-XNet were more anatomically focused, aligning well with expert annotations. We 
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quantified this using Intersection-over-Union (IoU) between Grad-CAM masks and organ-specific 

bounding boxes. 

• Average IoU (Lung-based pathologies): 

o DenseNet-121: 0.41 

o Anatomy-XNet: 0.58 (p < 0.01) 

This 41% relative improvement in localization accuracy confirms the effectiveness of anatomy-aware 

attention in enhancing model focus and transparency. 

4. Error Analysis 

A review of misclassified samples revealed that Anatomy-XNet was less likely to activate on irrelevant 

anatomical regions (e.g., soft tissues outside the thoracic cavity), reducing false positives. For example, 

false consolidation signals over the abdomen were frequent in the baseline model but markedly 

reduced in Anatomy-XNet predictions. 

5. Computational Performance 

Despite the added modules, Anatomy-XNet maintained computational efficiency: 

• Training time per epoch: 7.4 min (vs. 6.8 min for DenseNet) 

• Inference time per image: 0.18 sec (vs. 0.15 sec) 

This marginal increase is acceptable considering the interpretability and accuracy gains. 

Summary 

Anatomy-XNet demonstrates superior diagnostic accuracy and anatomical localization across three 

benchmark datasets. The incorporation of anatomical priors through attention mechanisms 

significantly enhances the model’s clinical relevance and interpretability, making it a robust candidate 

for AI-assisted radiology workflows. 

4. Discussion 

The results demonstrate that incorporating anatomical awareness into deep learning models can 

significantly improve thoracic disease detection from chest X-rays. Anatomy-XNet consistently 

outperformed the baseline DenseNet-121 across multiple datasets, highlighting the importance of 

integrating organ-specific context in medical image analysis. By focusing the model’s attention on 

clinically relevant anatomical regions such as the lungs, heart, and diaphragm, Anatomy-XNet was 

better able to localize disease manifestations, leading to improved classification accuracy and reduced 

false positives. 

The improvements in localization accuracy, evidenced by higher Intersection-over-Union scores, also 

enhance model interpretability—a crucial factor for clinical adoption. Radiologists are more likely to 

trust AI predictions when attention maps align with known anatomical landmarks, making Anatomy-

XNet’s outputs more transparent and actionable. 

Moreover, the model’s robustness across three diverse datasets with varying label quality and patient 

populations demonstrates its generalizability. The slight computational overhead introduced by the 

attention modules is justified by the performance gains and interpretability benefits, ensuring the 

model remains practical for real-world deployment. 
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However, this study has limitations. The reliance on available organ-level annotations, either manually 

labeled or inferred, may restrict applicability where such data are unavailable. Additionally, while 

improvements were statistically significant, they are moderate, suggesting room for further 

optimization, such as incorporating temporal data from longitudinal studies or integrating clinical 

metadata. 

Future work could explore extending anatomy-aware mechanisms to other imaging modalities and 

diseases, as well as investigating personalized models that adapt attention based on individual patient 

anatomy. Overall, Anatomy-XNet represents a promising step toward more accurate, interpretable, 

and clinically aligned AI in radiology. 

5. Conclusion 

This study presents Anatomy-XNet, an anatomy-aware deep learning model that enhances thoracic 

disease detection in chest X-rays by integrating anatomical priors into its attention mechanisms. Our 

results demonstrate that embedding organ-specific focus improves both classification accuracy and 

localization precision across multiple large-scale datasets, outperforming conventional CNN 

architectures. The improved interpretability, evidenced by more anatomically relevant attention maps, 

increases clinical trust and usability. While the model introduces a slight computational overhead, the 

benefits in diagnostic performance and transparency underscore its potential for real-world application 

in radiology workflows. Future research should aim to broaden anatomical context incorporation, 

explore other imaging modalities, and refine attention mechanisms to further optimize performance. 

Overall, Anatomy-XNet signifies a meaningful advancement toward AI systems that align more closely 

with clinical reasoning, offering promise for improved diagnostic support in thoracic imaging. 
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